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ABSTRACT

A recently developed model predicts an energy dependent phase lag

in the modulated cosmic ray density U(t) given by U(t) U (t - r)
s

where U is the solution to the Fokker-Planck equation under time in-

dependent conditions and t is the average time spent by particles inside

the modulating region. The delay times T are functions of modulating

parameters R (the radius of the modulating cavity), V (the solar wind

velocity), and K (the effective average diffusion-coefficient which is

a function of energy). This model is applied to predict the time

evolution of the modulated cosmic ray proton spectrum over a simulated

solar cycle. The predicted spectra reproduce most of the features of

the so-called "hysteresis" effect when values of V = 360 km/sec,

22 2
R 60 a.u. and K varying between 1.3 x 10 cm /sec at solar maximum

22 2
and 3.5 x 10 cm /sec at solar minimum are used. A modulation produced

mostly by varying R over the solar cycle is less consistent with the

observations.
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I. Introduction

The modulation of galactic cosmic ray nuclei with kinetic energies

above a few tens of MeV/nucleon is qualitatively well understood in terms

of the diffusion-convection picture originally proposed by Parker (1958,

1963), and later modified to include the effects of energy loss processes

(Parker, 1965; Fisk and Axford, 1969; Fisk, 1971). In these models the

spectrum for a particular epoch of the solar cycle is calculated by

assigning specific values to a set of parameters assumed to characterize

the state of the modulating region at that time. These parameters are

chosen so that for an assumed interstellar spectrum the solution of the

equilibrium or time-independent modulating equations fit the observed

spectrum. The 11 year variation is then approximately reproduced by

varying one or more of the modulating parameters and calculating the

solutions under different stationary conditions. However when these

"quasi-stationary" solutions are compared in some detail with observed

variations at different energies, some features of the observed behavior

cannot be reproduced without introducing several new parameters. For

example, to explain the so-called "hysteresis" effect in which the

relative modulation at different energies changes substantially between

the phases of increasing and decreasing modulation as illustrated in

Figure 1, it is necessary to introduce a diffusion coefficient which is

an inseparable function of particle parameters and position and time
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coordinates. That is, the dependence of the diffusion coefficient on

energy must be made to change with time or position or both and new

parameters must be introduced.

As an alternative approach it has been shown recently (O'Gallagher

1973, 1975) that corrections for time variations in a dynamically

evolving modulating region will lead naturally to a "hysteresis effect"

without the need for additional parameters to characterize the "insep-

arability" of the effective diffusion coefficient. Physically these

corrections are a result of the fact that relatively large times may

be required for some low energy particles to propagate from the inter-

stellar medium by diffusion to the inner solar system. During this

time the average medium characteristics are changing gradually. Thus

particles with different propagation times will sample the average

slowly changing modulating characteristics at different levels so that

stationary solutions cannot be correct for all particles at the same

time. It was shown first (O'Gallagher, 1973) that the corrections for

this effect on the modulated density U(T,t) at kinetic energy T and

time t can be simply expressed by

U(T,t) U s(T,t-T) (1)

where U s(T-T) is the equilibrium or stationary solution for energy T

under conditions existing a time T earlier.

By solving the full time dependent diffusion-convection equation,

O'Gallagher (1975) (hereafter referred to as Paper I) showed that the

delay time T is in general a function of the usual modulating parameters,

including the diffusion coefficient which is of course a function of

energy. Thus this treatment predicts an energy dependent hysteresis
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effect without the need for exotic new modulating parameters.

It is the purpose of the paper to apply the concepts of this

model to predict how the modulated spectra should evolve during an

11 year cycle and to show that these predictions reproduce quantitatively

most observed features of the modulated spectra. In the process of this

analysis, preliminary estimates for both the magnitude of the diffusion

coefficient K (evaluated at a reference value of magnetic rigidity

times velocity of R = lGV) and the effective radius R of the modulating

region are obtained.

II. Time-Lags and the "Hysteresis Effect"

Observations of the so-called hysteresis effect are conventionally

presented in the form of regression plots of the intensity at some low

energy versus the intensity at some higher reference energy such as

illustrated in Figure 1. The effect can be concisely described by

stating simply that in general the intensities at the two energies are

related by a double-valued function. However there are two distinctly

different physical interpretations of this fact:

1) Attributing the different relative levels of modulation to

changes in the way the interplanetary medium depresses the intensity at

different energies.

2) Attributing the failure of the low energy intensity to track

the reference intensity to a real physical time-lag between the responses

of the modulated intensities at different energies.

In the first interpretation above, the relevant observational para-

meter to characterize the hysteresis effect is the "hysteresis ratio",

the ratio of the relative levels at low energy which are observed on the
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two branches of the regression curve at the same value of the refer-

ence intensity (Van Hollebeke, Wang and McDonald, 1972; Rygg,

O'Gallagher and Earl, 1974). For example, in Figure 1 the regressions

for the intensity at two different proton energies, -500 MeV and

1~00 MeV with respect to the Deep River neutron intensity show that

this hysteresis ratio is energy dependent, varying from %1.9 at 100 MeV

to 'nl.6 for n500 MeV protons. The effect was shown to be rigidity

dependent by Van Hollebeke, et al (1973) who found values of 2.6 and

2.0 for the hysteresis ratio of 60 MeV/nucleon protons and helium

respectively, and by Rygg, et al (1974) who found a somewhat smaller

effect for the two species at higher energies.

In the second interpretation the explicit dependence of intensity

on time is analyzed for both the low energy and the reference energy

and the relevant parameter is the "time-lag" which must be introduced

between the intensities at the two energies so that the loop in the

regression between the intensities closes to approximate a single

valued relationship.

The only quantitative analysis of hysteresis observations in terms

of such time-lags was reported by Burger and Swanenburg (1973) for

modulated electron intensities observed on OGO-5 with respect to the

neutron intensity at Sulfur Mountain. These values are plotted in

Figure 2 as a function of particle magnetic rigidity R times velocity 8.

Also plotted are the time-lags between the minimum neutron intensity

at Deep River and the intensity minima for 60 MeV/nuc protons and

helium estimated from the published data of Van Hollebeke, et al

(1973). It should be noted that the phase lag T is defined to

have positive sign when the lower energy intensity lags that at higher
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energy (as is generally observed to be the case) and appears to be a

smoothly decreasing function for R < 1.

An analysis of time-lags between different neutron intensity

monitors which resembled that discussed here was carried out by Simpson

(1964), and Simpson and Wang (1967, 70). However in the latter works no

evidence was found for significant lags between the neutron intensities

at widely differing cut-off rigidities (this justifies the direct

comparison of T calculated with respect to different neutron monitors).

Furthermore, the lags discussed there were between the modulated cosmic

ray intensity in general and an index of solar activity (the coronal

"green line") not between modulated intensities at different energies

with respect to one another.

It should be emphasized that the physical basis for interpreting a

"hysteresis ratio" and a "hysteresis phase lag" are fundamentally differ-

ent. It is quite possible that both effects are present and that separa-

tion of the two may be quite difficult. However, despite the phenomena-

logical description of hysteresis in terms of time-lags by some,

virtually all of the attempts to explain the phenomena have been based

solely on the first interpretation. For example, O'Gallagher (1969),

Schmidt (1972), Van Hollebeke, et al (1972), Le.zniak and Webber (1971),

Burger and Swanenburg (1973), Bedijn, Burger, and Swaneaiburg (1973),

Van Hollebeke, et al (1973), and Rygg, et al (1974), all discuss in one

way or another the description of the observations in terms of a change

in the rigidity dependence of some "modulating function" in a time-

independent model. On the other hand, the model developed in Paper I

and discussed in the Introduction, provides for the first time a frame-

work for the second interpretation by incorporating time-dependent

diffusion and convection.
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III. The Basic Three Parameter Model

The full time-dependent diffusion convection equation for the

modulated cosmic ray density of a particular particle type is

K 3 (r2 U V ; (r U) + 2V - (aTU) = (2)
2 3r ar 2 r 3r 3T 3t

r r

where

K = K(r,t,R,B) is the diffusion coefficient for a

particle of velocity B and magnetic rigidity R

at heliocentric radius r and time t

V is the solar wind velocity

and
T + 2T

= T+T (T is the rest energy).
o

In addition, we have made the following simplifying assumptions:

(1) The diffusion is isotropic (K is a scaler).

(2) The interplanetary medium is completely homogeneous (K and

V are independent of heliocentric radius r), and

(3) The modulating cavity is spherically symmetric (with

radius R).

In the conventional treatment the right hand side of equation (2)

is set identically equal to zero and a form is assumed for the inter-

stellar spectrum U (T) and for the rigidity dependence of the diffusion

coefficient K = K B f(R) and a complete solution is numerically calculated
o

on a computer. Such solutions are the "stationary solutions" Us in

equation (1) corresponding to particular values of R, V, and Ko (and,

of course, Uo(T) and f(R)).

In the treatment proposed in Paper I it was shown that from the
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solution of equation(2)including the time dependent term, one finds that

the delay times T appropriate for equation (1) are given by

T(R,V,K) = 2  /K ](3)
v /K + 36R 2 1

Thus equations (1) and (3) provide a direct means of determining the

parameters R, V and K in a way which does not involve assumptions

about the form of the interstellar spectrum. For example, using a

diffusion coefficient consistent with reported magnetic field power

spectra (Jokipii and Coleman, 1968), and a solar wind velocity V = 360

km/sec, the delay timescalculated as a function of RO are plotted in

Figure 3 for several different values of R. Note in particular that

the predicted times have the limiting behavior that

T R/V K << VR (4a)

and

T R2/6K K >> VR (4b)

Also note that delays considerably longer than 6 months are possible

under some conditions. The remarkable qualitative agreement between

the predicted time delays (Figure 3) and those observed (Figure 2)

provides considerable justification for continued analysis based on

these concepts. Thus, based on this model, if one could measure T

accurately as a function of energy and time, and also monitor V at

earth, one could determine

a) R as a function of time,

b) K(T,t) for K >> VR,

c) the absolute value of the "classical" modulating parameter

n = VR/K in the limit K >> VR as a function of time.
0
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Note that the model does not introduce an additional time-variable parameter

to characterize f(R), but assumes that this form remains constant during the entire

cycle. It was shown by Rygg, et al (1974) that if such a time variation is not

introduced, other variations in R, V,and Ko will not produce a hysteresis in the

stationary solutions. That is, the calculated spectra remain essentially unchanged

for a wide range of R, V, and K , as long as the effective modulation characterized
o

by the parameter n = RV/K and the form of f(R) are held constant.
o

It should also be noted that the solution derived in Paper I does not analy-

tically include the effect on propagation times caused by the changes in K during

propagation due to adiabatic energy loss processes. However it was shown here that

such energy changes do not become important except in the low energy region where T

is independent of K. Thus adiabatic energy loss processes do not appreciably affect

the delay times calculated from equation(3)on the basis of the energy (i.e. value of

K) at which they are observed. The effects of these processes and other more com-

plicated effects (e.g. radial propagation of non-uniformities in K due to convection)

will lead to additional corrections which should be incorporated into more sophisti-

cated time-dependent models.

To the extent that the idealized parameters R, V, and K can be related to real

physical characteristics of the modulation, however this model provides a consider-

ably more powerful means of determining them than other current models. It should

be kept in mind that any real variation with time in effective dependence of the

modulation on energy has been neglected in this approach. On the other hand, as

long as diffusion is a good approximation to the mode of particle propagation the

above effects must be present to some degree.

Unfortunately, accurate measures of T over a wide range of particle parameters

and long time intervals do not yet exist so that applications of the model must be

relatively crude at present.
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In the present work, we will use observed data to choose reasonable values for

each of the three parameters and calculate the stationary proton spectra at various

times during a simulated solar cycle. We then use equation (3) to determine the

time-lags as a function of energy and time, and correct these spectra by a simple

linear interpolation between stationary spectra calculated at two different times.

We will then compare the corrected spectra with hysteresis observations. All of the

stationary spectra derived below are computed from a program developed by Fisk (1971)

applied to an assumed interstellar spectrum which is a power law in total energy

(U (T) - (T+T )-2.6) and calculated for f(R) = R in GV so that K = K x R (K in

cm /sec for Ra in GV).

IV. Calculation of Spectra

Choice of Parameter Values. We wish first to select values for V,R, and Ko

which are consistent with current observations and conventional analyses.

The choice for V is relatively straight-forward since observations over a large

portion of a solar cycle have not revealed any systematic variations in the average

solar wind velocity sufficient to account for observed modulation (Gosling, Hansen

and Bame, 1971). Therefore we shall assume this parameter remains constant in time

and chose a value of V = 360 km/sec which is the value found by Smith (1974), to give

the Archimedes spiral which most closely approximates the average magnetic field

behavior observed on Pioneer 10.

To determine R near solar maximum consistent with the model we invoke equation

(4a) and compare it with observed time-lags at small diffusion coefficient (small R)

from Figure 2. All of the observed lags for R8 s 1 GV are consistent with t = 280 + 70

days = R/V. With the above value for V this yeilds R = 60 a.u.

With these values of V and R, the value of the diffusion coefficient which best

22 2
fits the 1969 (Solar Maximum) proton spectrum is determined to be K = 1.3 x 1022 cm 2/

sec. The observed and calculated spectra are shown in Figure 4. Since we have
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deliberately kept the model simple the fit is not ideal at all energies.

In particular, the observed direct proportionality between intensity J

and energy T (J = AT) reported by Rygg and Earl (1973) is not accurately

reproduced consistent with the intensity at higher energies. However,

this discrepancy is a well known feature of computed spectra based on

such simple parameter models and has been discussed extensively (Fisk,

Forman and Axford, 1973). For the purposes of this study it is not

important since we are mainly interested only in the overall level of

modulation and how the relative levels vary with time. The values of

the three parameters correspond to r = 2.5 at solar maximum and a

similar fit gives n = 0.9 at solar minimum in 1965 with K = 3.6 x 1022

cm /sec as also shown in Figure 4.

Stationary Spectra. The variation in n between solar maximum and

minimum can be the result of a variation in either R or K or both. For

simplicity we have considered the effect of variations of each separately.

The two spectra in Figure 4 and the corresponding values of the modulat-

ing parameters have been taken to be the extremes of a nominal 10 year

solar cycle. Assuming that the cycle is symmetric and that the para-

meter n varies linearly with time between these extremes we have

generated 4 intermediate stationary spectra first by varying Ko and

then by varying R. The spectra are virtually identical in the two cases

since the form of f(R) was not changed. Thus there is no way of

distinguishing between an R or Ko variation on the basis of the

stationary spectra. The full complement of spectra for the case of K
0

varying but R and V constant is shown in Figure 5, and selected points

calculated for varying R with K constant are indicated by X's. For
o

a I0 year cycle beginning at solar minimum in year 0, the individual



stationary spectra for each year are numbered from 0-9 in the Figure.

Note that there is no "hysteresis" since the stationary spectra at a

particular level of modulation at high energies (e.g. years 2 and 8)

are identical at all energies.

Corrected Spectra. The time delays expected from diffusive

propagation can be calculated directly from equation (3) as a function

of energy for each spectrum in Figure 5. Families of curves illustrating

these times for the cases of K variation and R variation are shown in
o

Figure 6 (a and b). Note that there is considerable difference in the

time variation of T in the two cases which in principle would allow us

to distinguish between R or K variation.

Since the intensity J is related to the density U by J = we

can simply rewrite equation (1) for J as

J(T,t) J (T,t-T)

AJ
= J (T,t) - t T . (5)

At

It is then a simple procedure to interpolate between to stationary

spectra assumed separated by a year (At = 365 days) to determine the

corrected intensity J(T,t) by inserting the appropriate value of T

from Figure 6 in equation (5).

The full range of spectra which have been synthesized by this

procedure for the case of Ko varying, R = constant (Figure 6a) are

shown in Figure 7.

Many aspects of observed hysteresis phenomenon are immediately

evident in Figure 7. Note in particular the following

(1) The intensity at lower energies always lags that at
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higher energies (as observed) as a general consequence

of the model. Models which explain hysteresis by varying

f(R) do not predict the direction of the effect.

(2) The corresponding spectra in opposite phases of the

modulation (e.g. years 4 and 7) actually cross as observed

(Rygg, et al, 1974). Models which vary f(R) produce this

effect near solar maximum by increasing the modulation at

low energies at the same time as it is decreasing at high

energies.

(3) At the same level of modulation at high energies (e.g.

spectra for years 1 and 9) the spectra diverge gradually as

one goes to low energies which is the observed qualitative

feature discussed in detail by Rygg, et al (1974).

While each of these features can be reproduced by models which

vary f(R), they emerge naturally from the present model. Variations

in f(R) require a particular systematic variation of the interplanetary

power spectrum (a spectral exponent which steepens as one passes through

a solar maximum) which, although it may occur, has not been observed.

In addition, it requires new parameters to describe and new physics to

explain.

V. Hysteresis "Loops"

In Figure 8 a, b, and c, calculated regressions for the intensity

at three low energy intervals with respect to that at 10 BeV are

shown and compared with the observations. In each case the spectra in

Figure 5 yield a single-valued regression. The low

energy intensities are corrected for the propagation delays T from
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Figure 6a (R = const, K varying) using equation(5).

Consider first the predicted behavior for 100 MeV protons in

Figure 8a. Two regression loops are shown. The dashed curve is based on a

symmetric 10 year cycle. That is At in equation(5)is assumed to be 1 year be-

tween each of the 6 spectra in Figure 5 which give the single valued regression

shown. The resulting loop agrees well with the observations from solar

minimum to solar maximum (upper branch) but lies closer to the single

valued regression than the observations on the lower branch. As a more

accurate application of the model we note, however, that the actual

solar cycle which we are analyzing was not symmetric nor did it last

10 years. After cosmic ray maximum in May 1965, the general level

decreased gradually until 1969-70, which is considered to be the most

recent solar maximum. Then intensities recovered rather rapidly, so

that by late 1972 most indices were back to nearly the 1965 levels.

Accordingly we have also calculated expected regressions for a more

accurate approximation to the true cycle described by a 4 year declining phase

from solar minimim to maximum (1965-1969) and a 3 year recovery (1969-

1972). Thus At in equation(5)was 292 days and 219 days respectively

during the depression and recovery phases. The resulting locop fits the

data extremely well. Note in particular that the calculated regression

has a pronounced segment of negative slopenear solar maximum. The

importance of this observed feature was discussed by Rygg, et al (1974).

The agreement is quantitative as well as qualitative in that the two

branches are related by a factor of %1.9 as observed (see Figure 1).

The difference between the two calculated loops and the better

argreement attained by the latter serves to emphasize that the correction
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given by equation(5)depends not only on the phase lag T, but also on the

rate dJ/dt at which the spectrum is changing. In particular, note that

one prediction of the model is that if a period of relatively constant

intensity is maintained for longer than T, hysteresis loops should close.

The regressions calculated in Figure 8b and c have all been derived for

the more representative approximation to the actual cycle.

In Figure 8b we show the data of Van Hollebeke,et al (1972) and the

calculated regression produced by varying K with R constant (dashed curve).

Again the agreement is excellent showing the proper spread between upper

and lower branches as well as the segment of negative slope. Also shown

in Figure 8b is the regression calculated for phase lags which would be

expected if K were held constant and R varied (Figure 6b). It would

appear that the short delays predicted in a small region at solar

minimum are not consistent with the observations.

Finally in Figure 8care shown the calculated and observed regressions

for 500 MeV protons. Here, although relatively good agreement is attained

during the declining phase and near maximum, during the recovery phase

the effect is about 60% larger than predicted. This discrepancy is

perhaps due to the simplicity of the three parameter model and the

possibility that some assumptions are inaccurate. For instance, the

value of K used here was based on a) an assumed diffusion coefficient

K = Ko RS, and b) as assumed interstellar spectrum which is a power law

in total energy. An inaccuracy in either or both of these assumptions

could easily account for a diffusion coefficient about 60% smaller than

used here which would remove the discrepancy without affecting the lower

energy results. It would however imply a correspondingly larger value
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of n which in turn would suggest that Uo at v500 MeV was somewhat

higher than the power law in total energy assumed. Neither the obser-

vations nor the simplified modulation model used here can allow such a

conclusion to'be drawn unambiguously at the present time.

VI. Summary and Conclusions

The analysis and comparison with observations in the foregoing

sections has demonstrated that a model incorporating the effects of

diffusive propagation delays, provides a completely self-consistent

explanation of the so called "hysteresis effect". In particular,

the following features are specifically predicted as observed.

(1) The "cross over" of modulated spectra observed in two

successive years on either side of solar maximum.

(2) The splitting towards lower energies of the spectra

modulated at the same level at high energies.

(3) The segment of negative slope observed in some regression

near solar maximum.

(4) The direction of the effect (the fact that lower energies

lag higher energies in time).

In addition to this qualitative agreement, the model provides

excellent quantitative agreement with the observations when applied for the

actual time behavior in the solar cycle. This agreement is achieved without

introducing any new free parameters. Imposing self-consistency with

estimates of theoverall level of the modulation provides in fact a crude

determination of these parameters. Starting with only the assumptions of
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a constant solar wind velocity V = 360 km/sec and an interstellar spectrum

which is a power law in total energy, application of the model leads to

the following tentative conclusions:

1) The effective size of the modulating cavity at solar maximum

in 1969-70 was R = 60 a.u. (within about + 25%).

2) The effective diffusion coefficent for particles with R8 = 1 GV

22 2
at solar maximum was K = 1.3 x 10 cm /sec (also with an accuracy of

about + 25%).

3) The value of the modulating parameter n varied from 2.5 at solar

maximum to 0.9 at solar minimum.

4) Much of the variation in n was due to variation in effective

diffusion coefficient K rather than size of the modulating cavity.

It is worth noting that the parameters above would predict a gradient

for 1 BeV protons of _ V = 3%/a.u. which is in excellent
U 3r K(1 BeV)

agreement with the integral gradients observed on Pioneer 10 (see

McKibben, 1975)for particles with a median energy of % 1 BeV/nucleon..

On the other hand, the observation of a hysteresis effect for 500 MeV

protons which is about 60% larger than predicted by the above assumptions

would indicate that the above estimate of Ko may be high and the estimate

of n (and therefore the corresponding gradient and true interstellar

spectrum) low by perhaps a factor of Z 2.

Continued monitoring of the modulated intensity over a wide range

of energies during the entire cycle will provide the data from which a con-

clusive test of the validity of these concepts can be made. Should they continue

to be as succesful at explaining the more precise observations as for

current observations, then they have potential to provide, in addition,

a continuous monitor of the modulation parameters themselves and a definitive
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reconstruction of the interstellar proton spectrum above "500 MeV.
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FIGURE CAPTIONS

FIGURE 1. Observed regressions for Cosmic Ray Protons versus Neutron
Intensity exhibit the double-valued "hysteresis effect".
The data are from a series of balloon flights covering most
of a complete solar cycle (Rygg and Earl, 1971, Rygg et al
1974).

FIGURE 2. The modulated intensity of low rigidity particles appears
to "lag" the intensity at higher rigidity (as measured by
neutron monitors) by delay times of up to more than 30 days.
The electron and integral proton measurements (Burger and
Swanenburg, 1973) clearly show a gradually shortening of
the delay with increasing rigidity. The low rigidity
proton and helium points are from the data of Van Hollebeke,
et al (1972).

FIGURE 3. Predicted delay times calculated from equation 3. For
illustration we have used a diffusion coefficient
consistent with interplanetary magnetic field power spectra.
The curves shown are qualitatively similar to the observed
times shown in Figure 2.

FIGURE 4. Data for protons observed near solar maximum and solar
minimum are shown together with computed spectra based on
the modulation parameters indicated. The individual
measurements were compiled from a number of sources by
Rygg, et al (1974). The calculated spectra were based
on an assumed unmodulated spectrum having the form of a
power law in total energy.

FIGURE 5. Calculated stationary or time-independent spectra for
each year of a symmetric 10 year solar cycle. The spectra
were calculated by assuming the modulating parameter
n = VR/K varies linearly with time between the solar maximum
and minimum spectra in Figure 4 and the curves shown are for
V and R constant with Ko varying. Selected points for V and
K constant while:R varies are shown by the X's. The diffusion
coefficient was assumed to be proportional to R for all
spectra so no "hysteresis" is generated.

FIGURE 6. Delay times calculated to correct the spectra in Figure 5
based directly on the values of R, V, and K used to generate
those spectra. a) constant R, variable Ko , b) constant Ko,
variable R.

FIGURE 7. Calculated Spectra corrected for propagation delays. The
spectra exhibit all observed features of the "hysteresis
effect" as discussed in the text.
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FIGURE 8a. The corrected intensities exhibit hysteresis loops which
are similar to the observed loops. The best fit is attained
when a cycle made up of a 4 year decling phase and a 3 year
recovery (heavy dotted lines) is used rather than a symmetric
10 year cycle (5 year declining andrecovery phases shown by
the light dashed curve).

FIGURE 8b. The loop calculated from the model for 60 MeV protons
relative to high energies agrees well with the observations
if the times are based on a constant radius with Ko variable.

FIGURE 8c. The predicted times from Figure 6a are not long enough to
produce all of the observed hysteresis at 500 MeV but this
simply indicates that the actual diffusion coefficient may
be slightly smaller than used here in our simple model at
these energies.
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